SECOND ORDER PARALLEL TENSORS ON PARA r-SASAKIAN MANIFOLDS WITH A COEFFICIENT α
نویسنده
چکیده
Levy [11] had proved that a second order symmetric parallel non singular tensor on a space of constant curvature is a constant multiple of the metric tensor. Sharma [6] has proved that second order parallel tensor in a Kaehler Space of constant holomorphic sectional curvature is a linear combination with constant coefficients of the Kaehlerian metric and the fundamental 2-form. In this paper, we show that a second order symmetric parallel tensor on a para r-Sasakian manifold with a coefficient α is a constant multiple of the associated metric tensor and we have also proved that there is no non zero skew symmetric second order parallel tensor on a para r-Sasakian manifold.
منابع مشابه
On $(epsilon)$ - Lorentzian para-Sasakian Manifolds
The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.
متن کاملRicci Solitons in Lorentzian Α-sasakian Manifolds
We study Ricci solitons in Lorentzian α-Sasakian manifolds. It is shown that a symmetric parallel second order covariant tensor in a Lorentzian α-Sasakian manifold is a constant multiple of the metric tensor. Using this it is shown that if LV g + 2S is parallel, V is a given vector field then (g, V ) is Ricci soliton. Further, by virtue of this result Ricci solitons for (2n + 1)-dimensional Lor...
متن کاملOn Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α
The aim of the present paper is to study properties of Quasi conformally flat LP-Sasakian manifolds with a coefficient α. In this paper, we prove that a Quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α is an η−Einstein and in a quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α if the scalar curvature tensor is constant then M ...
متن کاملOn Para-sasakian Manifolds
In ([1]), T. Adati and K. Matsumoto defined para-Sasakian and special para-Sasakian manifolds which are considered as special cases of an almost paracontact manifold introduced by I. Sato and K. Matsumoto ([10]). In the same paper, the authors studied conformally symmetric para-Sasakian manifolds and they proved that an ndimensional (n>3) conformally symmetric para-Sasakian manifold is conforma...
متن کاملOn Para-sasakian Manifolds Satisfying Certain Curvature Conditions with Canonical Paracontact Connection
In this article, the aim is to introduce a para-Sasakian manifold with a canonical paracontact connection. It is shown that φ−conharmonically flat , φ−W2 flat and φ−pseudo projectively flat para-Sasakian manifolds with respect to canonical paracontact connection are all η−Einstein manifolds. Also, we prove that quasi-pseudo projectively flat para-Sasakian manifolds are of constant scalar curvat...
متن کامل